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Abstract

The transient behavior of circuits like switching power converters and switched capacitor
filters are expensive to simulate because these circuits are clocked at a frequency whose
period is orders of magnitude smaller than the time interval of interest to the designer. It
is possible to reduce the simulation time without compromising accuracy by exploiting
the property that the behavior of such a circuit in a given high frequency clock cycle is
similar, but not identical, to the behavior in the preceding and following cycles. In
particular, the 4envelope" of the high-frequency clock can be followed by accurately
computing the circuit behavior over occasional cycles. In this paper the implementation
of such an envelope-following method that is particularly efficient for switching power
and filter circuits is described, and results demonstrating the method's effectiveness are
presented.
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The transient behavior of circuits like switching power converters and DI IC TAB C1
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S are clocked at a frequency whose period is orders of magnitude smaller ....'.C .
than the time interval of interest to the designer. It is posible to re-
duce the simulation time without compromising accuracy by exploiting By
the property that the behavior of such a circuits in a given high frequency D t
clock cycle is similar, but not identical, to the behavior in the preceeding
and following cycles. In particular, the "envelope" of the high-frequency , :,y
clock can be followed by accurately computing the circuit behavior over

occasional cycles. In this paper the implementation of such an envelope- r. .. r
following method that is particularly efficient for switching power and D'A
filter circuits is described, and results demonstrating the method's effec-
tiveness are presented. A -1

1 Introduction
In general, analog circuit designers rely heavily on circuit simulation programs
like SPICE [nagel75] or ASTAP [weeks73] to insure the correctness and the per-
formance of their designs. These programs simulate a circuit by first construct-
ing a system of differential equations that describes the circuit, and then solving
the system numerically with a time discretization method such as backward-
Euler. When applied to circuits like switching power converters or switched-
capacitor filters, such classical circuit simulation algorithms become extraordi-
narily computationally expensive. This is because switching power converters
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and switched-capacitor filters use high frequency clocks whose periods are typi-
cally orders of magnitude smaller than the time intervals of interest to a designer.
The nature of the calculations used in a circuit simulator implies that to con-
struct the solution over the time interval of interest, an accurate solution must
be computed for every cycle of the high frequency clock in the interval, and this
can involve hundreds of cycles. The infeasibility of simulating such circuits with
classical techniques has led frustrated designers to develop specialized analog
computers on which to do their simulation [kassakian79].

Fast approximate techniques have been developed for simulating switching
power converters and switched capacitor filters, but the two problems are ap-
proached quite differently. The most common approach to simulating switched
capacitor filters is first to break the circuit up into functional blocks such as op-
erational amplifiers and switches, and replace each with a simple macromodel.
It is then assumed that after each clock transition, every node in the circuit
reaches its equilibrium point before another transition occurs. This assump-
tion, along with the use of algebraic macromodels, allows the filter to be treated
as a low order discrete-time system whose solution for hunderds of clock cycles
can be computed quickly (tsividis79, deman80]. The most common techniques
for simulating switching power converters is to treat the switches as ideal, and
the remaining circuitry as linear. With this approximation, the solution over
hundreds of clock cycles can be computed rapidly [hsiao87].

Although programs based on the above techniques have served designers well,
they are based on idealizations of the circuits involved which may eliminate be-
havior that is important to a designer. In this paper we present an approach
for the detailed transient simulation of switching power and filter circuits which
does not involve any idealization of the behavior, and is much more efficient than
classical direct methods when the clock period is small compared to the sim-
ulation interval. This method, referred to as envelope-following (petzold81]
exploits the property of such circuits that the node voltage waveforms over a
given high frequency clock cycle are similar, but not exact duplicates, of the
node voltages waveforms in proceeding or following cycles. This suggests that
it is possible to construct a solution accurate over mary high frequency clock
cycles by calculating the solution accurately for a few selected cycles. .

In the next section, we present the details of an envelope-following method
that is effective for many types of switching circuits. In Section 3 we describe
some of the computations involved in the method. Their implementation in
the program Nitswit along with results from using Ntswit to simulate several
switching power and filter circuits is described in Section 4.
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2 The Envelope-Following Method
Most circuits can be described by a system of differential equations of the form

d
dp(z(t), u(t)) + f(z(t), u(t)) = 0, ()

where z(t) E RN the state, is the vector of capacitor voltages and inductor
currents, u(t) E RM is the vector of input sources, p&z(t), u(t)) E RN is the
vector of capacitor charges and inductor fluxes, and f(z(t), u(t)) E *RN is the
vector of resistive currents and inductor voltages. If the state z is known at
some time to, it is possible to solve (1) and compute the state at some later
time 1l. In general, one can write

X(tj) = Z(to) + O(Z(to), to, ti) (2)

where 4 R x R x R -- Rn is a state transition function for the differential
equation.

We now consider that the circuit to be simulated has as an input a clock with
known period T that is much smaller than the simulation interval. In addition,
we assume the sequence formed by sampling the state at the beginning of each
clock cycle, z(O), z(T), z(2T) .. , z(mT),..., changes slowly as a function of m,
the clock cycle number. For such a circuit, a designer is usually interested in
the transient behavior of an envelope of the solution, which we define as the
continuous function derived by interpolating the sequence formed by sampling
the state every time interval T. Note that our use of "envelope" is not the com-
mon usage. Here, the envelope is not unique given x(t); the envelope generated
by interpolating the sequence z(O + r), x(T + r), z(2T + r).... depends on r.

A "differential-like" equation can be written for the elements of the sequence
z(O),z(T).z(2T).... associated with one envelope of the solution to (1). Ap-
plying (2), the elements of the sequence can be related by

-(rn) .z((m - 1)T) = O(z((m - I)T), (m - I)T, mT). (3)

The relation in (3) indicates how rapidly the initial point of each clock cy-
cle changes from one cycle to the next, and in that sense is like a differential
equation. This similarity can be exploited to derive methods for approximately
solving for the z(mT)'s. For example, the value of z((m + I)T) can be approx-
imated by

z((m + I)T) - z((m + 1)T) %t (I - 1)0(z(mT), mT, (m + 1)T), (4)

which is loosely analogous to solving a differential equation by forward-Euler.
To compute an envelope for a system with period T using a forward-Euler

envelope-following algorithm with a fixed cycle-step I, a simple repetitive two-
step process can be used. Given z(O), the first step is to calculate z(T) by
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solving (1) over the interval [0, T using a standard discretisation technique.

The second step is to set z(IT) = z(T) + (I - 1)(z(T) - z(0)]. This process is

repeated to compute z(21T), z(31T)..... Note that calculating the solution over

a long interval only requires solving the differential equation every P"A cycle.

Although simple to describe, a forward-Euler based envelope-following method

is not very effective for solving switching circuits because maintaining stability

severely limits the size of the cycle-step 1, just as with the standard forward-

Euler algorithm. A more stable algorithm is to approximate the value of

z((m + l)T) by

z((m + I)T) - z(mT) w 1(z((m + I - l)T), (m + I - l)T, (m + l)T), (5)

which is analogous to backward-Euler for the differential case. This approach

allows for larger cycle-steps than the forward-Euler based approach, but lf-ads to

more a complicated equation to compute each cycle-step. To see this, consider

computing z(IT) given z(0) based on (5). An z((l - I)T) must be found such

that when used as an initial condition for (1), the z(IT) computed with standard

discretization techniques satisfies x(IT) - z(O) = I[z(IT) - z((l - 1)T)] This is

a boundary value problem, and is in general difficult to solve. For the case

of switching power or filter circuits, the above boundary value problem can

be solved efficiently using a Newton method, and this is presented in the next

section.

3 Solution by Newton

As mentioned in the previous section, each cycle-step of the backward-Euler

envelope-following method requires the simultaneous solution of

x((m + I)T) - z(mT) = I[e((m + I)T) - z((m + I - 1)T)] (6)

and

z((m + I)T) - z((m + I - I)T) =
O (z((m + I - 1)7), (m + I - 1)T, (m + 1)7). (7)

for z((m + I - 1)T) and z((m + 1)T), where where z(mT) is presumed known.

Therefore, (6) and (7) represents 2n equations in 2n unknowns.

An iterative Newton's method can be applied to solving the above system.

In general, the Newton method applied to the problem of finding an z E P" such

that F(z) = 0, F : n _. Wn, yields the iteration equation J,(x k)[zk+l - =k ] =

-F(z*), where k is the Newton iteration count and Jr E W" is the Jacobian

of F. Reorganizing (6) and (7) into the form to apply Newton's method leads

to

(I - 1)z((m + I)T) + Iz((m + I - 1)T) - z(mT)
z((m + 1)T) - z((m + I - I)T) - 0|
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- F(z((m + I)T), z((m + I - 1)T)) = 0
(8)

In this case, JF(z((m + )T), z((m + I - 1)T)) is given by

(I9

where I, is the identity matrix of size n.
The most time-consuming computation in this Newton iteration is evaluating

Jr and F, which involves computing the state transition function, O4z((m + I -
1)T), (m + I - l)T,(m + I)T), and its derivative. The state transition function
can be evaluated by numerically integrating (1) from (m + I - I)T to (m + I)T
given z((m + I - 1)T). The derivative of the state transition function, referred
to as the sensitivity matrix, represents sensitivity of z((m + I)T) to changes in
z((m + I - I)T), and can be computed with a small amount of additional work
during the numerical integration.

To show how the computation of the state transition function and its deriva-
tive fit together, consider numerically integrating (1) with backward-Euler,
which we chose for its simplicity and because it appears to be one of the bet-
ter formulas for clocked analog circuits. Given some initial time to and some
initial condition, z(to), applying backward-Euler to (1) results in the following

1 * algebraic equation,

g(z(to + h), z(to)) = !(p((to + h)) - p(z(to))) + f(z(o + h)) = 0 (10)

where h E R is the timestep. Note we have dropped explicitly denoting the
dependence of p and f on the input u for simplicity.

Equation (10) is usually solved with Newton-Raphson, for which the iteration
equation is

J,(z(k)(to + h))(z(k+l)(io + h) - z(k)(to + h)) =

-g(z(h)(to + h), z(k)(to)) (11)

where J,(z(f)) E *NXN is the Frechet derivative of the nonlinear equation in
(10) and is given by

Mg(z(t), .) I Op(z(t)) Of(z(i))
8O(M)= Oz(t) T a Oz(t) + OZ(f) (12)

Solving (10) yields an approximation to z(io + h) = O(z(to),to,to + h).
Implicitly differentiating (10) for z(to + h) with respect to z(fo) yields

J.(Z(to + h)) az(to + h) 1 Op(Z(tO)) (13)
oz(to) = h Oz(to)



Given a z(to), (10) can be repeatedly applied to find z(to+T) = #(z(to), to, to+
7"), and (14) can be repeatedly applied to find the sensitivity matrix Oz(to +
T)/z(to) = 89(x(to), to, to + T)/0z(to) [aprille72]. Note that J1 is required in
both (12) and (14), and thus the sensitivity matrix update can be made more
efficient by factoring J. once and using it for both computations. However, the
sensitivity matrix is still expensive to compute, because it is an N x N full
matrix.

4 Implementation and Test Results

An envelope-following method has been implemented in the Nitswit [kundert88]
simulation program. The program is written in "C", and runs under the UNIX
operating system. The program uses a trapazoidal-rule based envelope-following
algorithm in which the cyclesteps are selected based on local truncation error.
The boundary value problems generated at each cyclestep are solved with the
Newton method described above.

Two techniques are also used to improve the efficiency of the basic algorithm.
Although switching power supplies and filters are not linear circuits, the state
transition function over one cycle is a nearly affine (linear plus a constant). This
property can be exploited to reduce the computation by only computing Jjr for
the boundary value Newton method on the first iteration at each timestep. This
is a significant savings, as then the sensitivity matrix need only be computed 0
once per timestep. The second technique that reduces the computation time
is based on the fact that the explicit forward-Euler based envelope-following
method is stable for cyclesteps of size two or less. This implies that if truncation
error considerations determine that a cyclestep of two or less is appropriate, the
boundary value problem can be avoided, and the step can be computed easily.

Exactly how the envelope-following method behaves can be seen by examin-
ing figures 1 and 2 below. Figure 1 is the solution to a buck-derived circuit(from
[hsiao87]) computed with classical direct method, where the exact solution is
only shown between 1 and 2 milliseconds because of point limitations in the
plotting program, and Figure 2 is the result produced by the envelope-following
method. As can be seen, the envelope-following method computes many fewer
cycles, but the ones computed match with the direct method.

In the table below we present a comparison between the cpu time used by
classical and envelope-following methods in simulating the start-up transient
from three types of switching power supplies, a push-pull flyback converter,
fly, a resonant converter (from fcasey87]), res, and a buck-derived circuit, buck;
and the step response from a switched-capacitor low-pass filter. In each case,
the clocking is provided by a user-defined source. As can be seen from the
table, the envelope-following method can be very efficient, particularly when
the simulation interval is long compared to the clock cylce.
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Circuit Nodes Inteval/Clock Classical Env. Follower.
scop 13 200 601 153
buck 8 1000 940 97
quasi 7 200 144 38
f*y 32 40 274 167

Table 1: CPU Time (in seconds) Comparisons for Classical vs Enve-
lope-Following simulation, based on a SUN4

5 Conclusions and Acknowledgements
In this paper it is shown that an envelope-following approach to the simulation of
switching power and filter circuits can provide substantial speed improvements
over classical simulation methods. Several aspects of the method are still under
investigation. In particular, it has been observed that most of the entries in
the sensitivity matri. remain close to zero, and how to exploit this is being
considered. In addition, the effectiveness of the envelope-following is somewhat
dependent on where the cycle boundaries are placed, and an automatic selection
method is desirable.
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* sakian, and Steven Leeb at MIT's Laboratory for Electromagnetic and Elec-

tronic Systems for their assitance in understanding the switching power sir-
ulation problem, and Prof. A. R. Newton for his suggestions. This work was
supported by the Defense Advanced Research Projects Agency contract N00014-
87-K-825, and Analog Devices.

References

[aprille72] T. Aprille, T. Trick. "Steady-state analysis of nonlinear circuits
with periodic inputs." Proc. IEEE, Jan 72.

[deman80 H. De Man, J. Rabaey, G. Arnout, J. Vandewalle. "Practical im-
plementation of a general computer aided design technique for
switched capacitor circuits." IEEE Journal of Solhd-State Cir-
cuits, vol. SC-15, pp. 190-200, April 1980.

[hsiao87] C. J. Hsiao, R. B. Ridley, H. Naitoh, F. C. Lee. "Circuit-Oriented
Discrete-Time Modeling and Simulation for Switching Convert-
ers." IEEE Power Electronics Specialsts' Conf. Rec., 1987

jcasey87] L. F. Casey and M. F. Schlect, "A High Frequency, Low Vol-
ume, Point-of-Load Power Supply for Distributed Power Systems"
IEEE Power Elecroncs Speclists' Conf. Rec., 1987

7



[kassakian79] J. Kassakian. "Simulating Power Electronic Systems - A New
Approach." Proc. IEEE, vol. 67, Oct. 1979.

[kundert88] K. Kundert, J. White, A. Sangiovanni-Vincentelli. "A Mixed
Frequency-Time Approach for Finding the Steady-State Solution
of Clocked Analog Circuits." Cust. Int. Circ. Conf., May 1988.

[nagel75] L. W. Nagel. SPICE2: A Computer Program to Simulate Semi-
conductor Circuits. Electronics Research Lab Report, ERL M520,
Univ. of Calif., Berkeley, May 1975.

[petzold8l] L. Petzold. "An Efficient Numerical Method for Highly Oscilla-
tory Ordinary Differential Equations." SIAM J. Numer. Anal.,
Vol. 18, No. 3, June 1981.

[tsividis79] Y. P. Tsividis. "Analysis of switched capacitor networks." IEEE
Transactions on Circuits and Systems, vol. CAS-26, pp. 935-946,
November 1979.

[verghese86] G. C. Verghese, M. E. Elbuluk, J. G. Kassakian. "A General Ap-
proach to Sampled-Data Modeling for Power Electronic Circuits."
IEEE Trans. on Power Electronics, Vol. PE-1, No. 2, April 1986.

(weeks73] W. T. Weeks, A. J. :!menez, G. W. Mahoney, D. Mehta, H.
Quasemzadeh, T. R. Scott. "Algorithms for ASTAP - A Net-
work Analysis Program." IEEE Transactions on Circuit Theory,
pp, 628-634, Nov. 1973.

8



IIIIIII I i i -. "

9.00

8.00 ..l

7.00

6.00

5.00 -

4.00

S@ 3.00

2.00 -

1.00

x , 10
- 3

0.00 2.00 4.00 6.00 8.00

Figure 1: Buck Converter Solution Computed with the Classical Method
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